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Introduction



Why LTAGs?

e Constituency structure
e Linguistically plausible
e Built-in bi-lexical relations

e Deep syntax

Weighted grammars

e Disambiguation/Preference
e Robustness:

e Unknown words
e Errors

Lexicalized Tree Adjoining Grammar (LTAG)
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LTAG parsing

CKY-type algorithm

e Deduction-rule based

e Bottom-up

Complexity
O(n® max(n, g)gt):

n: sentence length
t: maximum number of nodes in an elementary tree

g: maximum ambiguity

= O(n") asymptotically w.r.t. the sentence length [Eisner et al., 2000]



LTAG parsing problem

Lexical ambiguity
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Supertagging approach (1)

Lexical ambiguity
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Supertagging approach (2)

She walks the dog
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S
.
N v oo NP
BN e \
VBZ NP <7~ NN
\ \
She walks the dog
S
a
NP VP ? - NP
VBZ NN

She walks, despite her hatred for quadruped mammals, the dog



Supertagging approach (3)

Pipeline
1. Supertagging
2. Constraint LTAG parsing

Downsides

e Long distance relationship

e 2nd step complexity: O(n"t)
= No lexical ambiguity



Phrase structure tree VS Dependency tree

"...One should always distinguish the type of representation |...]

from the content of the representation...” [Rambow, 2010]
Syntactic content Representation types
e Syntactic dependency e Dependency tree
e Syntactic phrase/constituency structure e Hierarchy structure tree

= Syntactic phrase-structure parsing as a dependency structure parsing task



LTAG derivation tree
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Representation alternative: the LTAG derivation tree is a dependency tree
[Rambow et al., 1997] 8



Proposed approach (1)

Lexical ambiguity

AN

Combination ¢——  — »  Non-trivial dependency

constraints structure



Proposed approach (1)
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Proposed approach (2)
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Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships
2. LTAG parse labeler

Downsides

e 1st step complexity: O(n”) [Gémez-Rodriguez et al., 2009]

e 2nd step complexity?

10



Proposed approach (2)

| . ! ! . '
She deliberately  walks the dog She deliberately  walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships
2. LTAG parse labeler

Downsides

e 1st step complexity: O(n”) [Gémez-Rodriguez et al., 2009]
= Efficient decoding in practice via Lagrangian relaxation
[Corro et al., 2016]

e 2nd step complexity?

= This contribution!
10
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Characterization of LTAG
derivation trees




LTAG derivation trees

Structural properties [Bodirsky et al., 2005]

e Arborescence (directed tree)
e 2-bounded block degree

o Well-nestedness

2-bounded block degree

e Maximum 1 gap in the yield of a sub-arborescence
= Due to wrapping adjunction

Well-nestedness

e Sub-arborescences must not interleave (not used in this presentation)

12



Yield of a vertex v: set of all nodes reachable from v
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Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
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Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
Yield(1) = {1}

Yield(2) = {1,2,3,4}
Yield(3) = {3}

Yield(4) = {1,3,4}

13



2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2
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2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
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2-bounded block degree
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e Vertex: number of contiguous intervals described by its yield
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2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U [4] BD(1) =2
Yield(2) = [2...3] BD(2) =1
Yield(3) = [3] BD(3) =1
Yield(4) = [4] BD(4) =1

Intuition

e Auxiliary tree anchored at s; adjoined via wrapping adjunction

e Anchors s, and s3 attached below the foot node "



Dynamic programming [Gémez-Rodriguez et al., 2009]

e Complexity: O(n"), intractable on long sentences

= Asymptotically equivalent to LTAG parsing!
Combinatorial optimization [Corro et al., 2016]
e Complexity: exponential
e Practically: fast
= "Simple” optimization problem as there is no constraint
on combination operations
Intuition

1. Non-trivial dependency structure parsing tackled via combinatorial
optimization
2. Complexity of parse tree labeling?

15



Outline of the algorithm




Parse tree labeling

Lexical ambiguity

AN

Combination ¢—— )  Non-trivial dependency

constraints structure
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Parse tree labeling

Lexical ambiguity
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Deduction system

! 0 ! ! . )
She deliberately walks the dog She deliberately walks the dog

Dynamic program
e Deduction rule

e Agenda

Bottom-up

1. Dependency tree: words considered after its modifiers

2. Elementary tree: non-terminal considered after its children

17



Key idea: extract information from the dependency structure

Notation Value

(va) 41

(va)= V6

Information about v, (va)e V2
(va)— V3

e Parent: v3 (va)1 %

e Yield span: [1,6]
e Gap span: [2,3] 8



Key idea: no integer span

Main difference
Vertices are used to define spans instead of integers

> combination rule constrained by arcs between vertices

Standard LTAG parser items (CKY) Our parser items

[h, T, p,c,i,j, k, ] with: [Vh, T, P, C, by, by] with:
h: anchor word index vp: vertex (anchor word)
T: elementary tree T: elementary tree
p: gorn address p: gorn address
c: combination flag c: combination flag
i, I: yield span (integers) by left boundary (vertex)
J, k: gap span (integers) b,: right boundary (vertex)

19



Let's start with something simple... :-)

Move unary:

[vh,7,1.2.1, T, by, by]

NP VP
VBZ
walks

20



Let's start with something simple... :-)

Move unary:

[vh,7,1.2.1, T, by, by]
(b-2)¢r
[Vh7 T, 127 J—a b/a br]

NP VP
VBZ
walks
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Let's start with something simple... :-)

Move binary:

[Vh, T, 1.2, T, b/g, b,g]

e
VP

VBZ
walks
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Let's start with something simple... :-)

Move binary:

[Vha T, 127 T7 b/2a br2]
[Vh, 7, 17 L, b/l: br2]

(brl)é +1= (b12)<:

= Similar to LTAG parsing but with constraint on boundary vertices

e
VP

VBZ
walks

20



And now let’s see something nice! O_o

Substitute:

[Vm's T/: T b/: br]

S
S
NP NP VP
| |
PRP VBZ
| |
She walks
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And now let’s see something nice! O_o

Substitute:
[Vma Tla ]—a Tv b/a br]

[Vh7 T, P, Ta Vm, Vm]

Vm) = —, fss(m,p, 7")

= Fixed boundaries for the antecedent by the dependency tree

S
S
NP ecccee= > NP VP
| |
PRP VBZ
| |
She walks
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And now let’s see something nice! O_o

Substitute:

[vim, 7]

[Vh7 T, P, Ta Vm, Vm]

(Vm)e = —, fss(7,p, ")

= v}, fixed by the dependency tree
= Number of applications linearly bounded

S
S
NP ecccee= > NP VP
| |
PRP VBZ
| |
She walks
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[VmaT/aerabllabrl] [Vh7T7 paL7bl2;br2]

SQ SBARQ
RN \
WHNP SQ* NP NP SQoa
| |

VB VBZ
| |
like does

22



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[vaTlul-,T:bIl:brl] [VhaTa paJ—vbl2;br2]

[Vh7 T, P, T7 Vm, Vm]

fsa(t, p, ")

= Boundaries of the left antecedent are fixed (similarly to substitution)

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[Vl‘mT/] [VhaTap,J—;blabr]

[V/'H T, P, Ta Vm, Vm]

sa(,p, ")

= Gap filled with boundaries of the right antecedent?

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es

22



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[Vl‘mT/] [VhaTap,J—ablabr]

[VI'H T, P, Ta Vm, Vm]

Vm)e = (b1) <=, (Vm)= = (br)=, fsa(T, p, T/)

= v, fixed by the dependency tree

= Number of applications linearly bounded, again

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es
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Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/aerabllabrl] [Vh7T7 paL7bl2;br2]

= Right limit of the gap b,; unknown in the dependency tree

VP S
7 e
ADVP  VP* NP VP\
\ [
RB VBZ NP
\ \
deliberately walks
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Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/al',Tablla_] [VhaTa p7J~7b/2abr2]

= Workaround: — boundary to prevent anything in the right side of the
gap

VP S
P N A
ADVP  VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks
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Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/7<_] [Vh,T,p,L,b/,br]

= Left antecedent fixed by the dependency tree

VP S
P N A
ADVP  VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks
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Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[Vm77'/7<—] [VhaTapvJ—ablabr]

Vm):> = (b/)<: =1 fSA(ﬂ P T/)

[thTv P, T7 Vm, bl’]

= Is the number of applications linearly bounded?
(yes, proof in the paper)

VP S
P N A
ADVP  VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks
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Complexity




Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;Tal'szvb/Zaer]
[Vha T, 1a J—a b/l) br2]

(br1)= +1=(bn)«

Proof intuition
3 boundaries = O(n?) ?

24



Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;Tal'szvb/Zaer]
[Vha T, 1a J—a b/l) br2]

(br1)= +1=(bp)<=
Proof intuition

3 boundaries - - O(n’) 7

= Bounded by the elementary tree size if no multiple adjunction
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Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;T;1'27T7b/2abr2]

br1)= +1=(bp)e
(i, 7,1, L, bin, byo)] () (br)

Proof intuition

3 boundaries - - O(n’) 7

= Bounded by the elementary tree size if no multiple adjunction
Complexity
O(min(t, n)?ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

Z: maximum ambiguity

Asymptotically linear w.r.t. the sentence length
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Conclusion




Conclusion

Contributions

e New perspective on efficient LTAG parsing

e Linear time LTAG parse labeler

Future work

e Experimentation!
e Multiple adjunctions?

e Extension to other lexicalized formalisms:
Lexicalized Linear Context-Free Rewriting Systems, . ..

25



Questions?
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