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Introduction



Lexicalized Tree Adjoining Grammar (LTAG)

Why LTAGs?

• Constituency structure

• Linguistically plausible

• Built-in bi-lexical relations

• Deep syntax

Weighted grammars

• Disambiguation/Preference

• Robustness:

• Unknown words

• Errors
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LTAG parsing

CKY-type algorithm

• Deduction-rule based

• Bottom-up

Complexity

O(n6 max(n, g)gt):

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ O(n7) asymptotically w.r.t. the sentence length [Eisner et al., 2000]
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LTAG parsing problem

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Supertagging approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Supertagging approach (2)
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Supertagging approach (3)

Pipeline

1. Supertagging

2. Constraint LTAG parsing

Downsides

• Long distance relationship

• 2nd step complexity: O(n7t)

⇒ No lexical ambiguity
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Phrase structure tree VS Dependency tree

”. . . One should always distinguish the type of representation [. . . ]

from the content of the representation...” [Rambow, 2010]

Syntactic content

• Syntactic dependency

• Syntactic phrase/constituency structure

Representation types

• Dependency tree

• Hierarchy structure tree

⇒ Syntactic phrase-structure parsing as a dependency structure parsing task
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LTAG derivation tree
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Bottom-up construction of the syntactic phrase structure
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She deliberately walks the dog

Representation alternative: the LTAG derivation tree is a dependency tree

[Rambow et al., 1997] 8



Proposed approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Proposed approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Proposed approach (2)
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She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships

2. LTAG parse labeler

Downsides

• 1st step complexity: O(n7) [Gómez-Rodŕıguez et al., 2009]

• 2nd step complexity?
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Proposed approach (2)
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1.1

She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships

2. LTAG parse labeler

Downsides

• 1st step complexity: O(n7) [Gómez-Rodŕıguez et al., 2009]

⇒ Efficient decoding in practice via Lagrangian relaxation

[Corro et al., 2016]

• 2nd step complexity?

⇒ This contribution!
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Characterization of LTAG

derivation trees



LTAG derivation trees

Structural properties [Bodirsky et al., 2005]

• Arborescence (directed tree)

• 2-bounded block degree

• Well-nestedness

2-bounded block degree

• Maximum 1 gap in the yield of a sub-arborescence

⇒ Due to wrapping adjunction

Well-nestedness

• Sub-arborescences must not interleave (not used in this presentation)
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Yield

Yield of a vertex v : set of all nodes reachable from v
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2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2
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Yield(4) = [4] BD(4) = 1
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Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node
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Parsing

Dynamic programming [Gómez-Rodŕıguez et al., 2009]

• Complexity: O(n7), intractable on long sentences

⇒ Asymptotically equivalent to LTAG parsing!

Combinatorial optimization [Corro et al., 2016]

• Complexity: exponential

• Practically: fast

⇒ ”Simple” optimization problem as there is no constraint

on combination operations

Intuition

1. Non-trivial dependency structure parsing tackled via combinatorial

optimization

2. Complexity of parse tree labeling?
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Outline of the algorithm



Parse tree labeling

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Parse tree labeling

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure
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Deduction system

v1

v2

v3

v4

v5

She deliberately walks the dog

⇒ v1

τ1 v2

τ2

v3

τ3

v4

τ4

v5

τ5

1.1
1.2

1.2.2

1

She deliberately walks the dog

Dynamic program

• Deduction rule

• Agenda

Bottom-up

1. Dependency tree: words considered after its modifiers

2. Elementary tree: non-terminal considered after its children
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Key idea: extract information from the dependency structure

v1

v2

v3

v4

v5

v6

Why, he asks , does she walk ?

Information about v4

• Parent: v3

• Yield span: [1, 6]

• Gap span: [2, 3]

Notation Value

(v4)⇐ v1

(v4)⇒ v6

(v4)← v2

(v4)→ v3

(v4)↑ v3

⇒ Access in constant time
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Key idea: no integer span

Main difference

Vertices are used to define spans instead of integers

⇒ combination rule constrained by arcs between vertices

Standard LTAG parser items (CKY)

[h, τ, p, c , i , j , k, l ] with:

h: anchor word index

τ : elementary tree

p: gorn address

c : combination flag

i , l : yield span (integers)

j , k: gap span (integers)

Our parser items

[vh, τ, p, c , bl , br ] with:

vh: vertex (anchor word)

τ : elementary tree

p: gorn address

c : combination flag

bl : left boundary (vertex)

br : right boundary (vertex)

19



Moving

Let’s start with something simple... :-)

Move unary:

[vh, τ, 1.2.1,>, bl , br ]

walks

VBZ

VP

S

NP
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Move unary:

[vh, τ, 1.2.1,>, bl , br ]
(p · 2) /∈ τ

[vh, τ, 1.2,⊥, bl , br ]
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Moving

Let’s start with something simple... :-)

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
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Moving

Let’s start with something simple... :-)

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

⇒ Similar to LTAG parsing but with constraint on boundary vertices
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Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′, 1,>, bl , br ]

She

PRP

NP
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S
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Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′, 1,>, bl , br ]

(vm)← = −, fSS (τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Fixed boundaries for the antecedent by the dependency tree
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Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′]

(vm)← = −, fSS (τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ vh fixed by the dependency tree

⇒ Number of applications linearly bounded
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Boundaries of the left antecedent are fixed (similarly to substitution)

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′] [vh, τ, p,⊥, bl , br ]

fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Gap filled with boundaries of the right antecedent?

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ
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Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′] [vh, τ, p,⊥, bl , br ]

(vm)← = (bl )⇐, (vm)→ = (br )⇒, fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ vh fixed by the dependency tree

⇒ Number of applications linearly bounded, again

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ
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Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

⇒ Right limit of the gap br1 unknown in the dependency tree

VP

VP*ADVP

RB

deliberately walks
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NP
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Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′, 1,>, bl1,−] [vh, τ, p,⊥, bl2, br2]

⇒ Workaround: − boundary to prevent anything in the right side of the

gap
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Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′,←] [vh, τ, p,⊥, bl , br ]

⇒ Left antecedent fixed by the dependency tree

VP

VP*ADVP
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deliberately walks

VBZ

VP

S

NP

NP

23



Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′,←] [vh, τ, p,⊥, bl , br ]

(vm)⇒ = (bl )⇐ − 1, fSA(τ, p, τ ′)
[vh, τ, p,>, vm, br ]

⇒ Is the number of applications linearly bounded?

(yes, proof in the paper)

VP

VP*ADVP

RB

deliberately walks

VBZ

VP

S

NP

NP
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Complexity

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

Proof intuition

3 boundaries ⇒ O(n3) ?

⇒ Bounded by the elementary tree size if no multiple adjunction

Complexity

O(min(t, n)2ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ Asymptotically linear w.r.t. the sentence length
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Conclusion

Contributions

• New perspective on efficient LTAG parsing

• Linear time LTAG parse labeler

Future work

• Experimentation!

• Multiple adjunctions?

• Extension to other lexicalized formalisms:

Lexicalized Linear Context-Free Rewriting Systems, . . .
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Questions?
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