Transforming Dependency Structures to LTAG
Derivation Trees

13th International Workshop on Tree Adjoining Grammars and
Related Formalisms (TAG+13)

Caio Corro Joseph Le Roux

September 1, 2017

Laboratoire Informatique de Paris Nord (LIPN), Université Paris 13 (France), CNRS UMR 7030

Introduction

Why LTAGs?

e Constituency structure
e Linguistically plausible
e Built-in bi-lexical relations

e Deep syntax

Weighted grammars

e Disambiguation/Preference
e Robustness:

e Unknown words
e Errors

Lexicalized Tree Adjoining Grammar (LTAG)

S
A
NP VP
N
VBZ NP «___
| "~ NP
walks ‘
NN
\
dog
S
A
NP VP
N
VBZ NP <A
\ " NP
walks ‘
NN

river

LTAG parsing

CKY-type algorithm

e Deduction-rule based

e Bottom-up

Complexity
O(n® max(n, g)gt):

n: sentence length
t: maximum number of nodes in an elementary tree

g: maximum ambiguity

= O(n") asymptotically w.r.t. the sentence length [Eisner et al., 2000]

LTAG parsing problem

Lexical ambiguity

AN

Combination ¢——————————————) Non-trivial dependency

constraints structure

Supertagging approach (1)

Lexical ambiguity

WA

Supertagging approach (2)

She walks the dog

Supertagging approach (2)

S

e
NP VP NP
RN !
VBZ NP NN

She walks the dog

Supertagging approach (2)

S

e
NP o NP
N [T L |
VBZ NP < ~~ NN

\ \
She walks the dog

Supertagging approach (2)

S
.
N v oo NP
RN e |
VBZ NP <7~ NN
\ \
She walks the dog

She walks, despite her hatred for quadruped mammals, the dog

Supertagging approach (2)

S
.
N v oo NP
BN e |
VBZ NP <7~ NN
\ \
She walks the dog
S
a
NP VP NP
VBZ NN

She walks, despite her hatred for quadruped mammals, the dog

Supertagging approach (2)

S
.
N v oo NP
BN e \
VBZ NP <7~ NN
\ \
She walks the dog
S
a
NP VP ? - NP
VBZ NN

She walks, despite her hatred for quadruped mammals, the dog

Supertagging approach (3)

Pipeline
1. Supertagging
2. Constraint LTAG parsing

Downsides

e Long distance relationship

e 2nd step complexity: O(n"t)
= No lexical ambiguity

Phrase structure tree VS Dependency tree

"...One should always distinguish the type of representation |...]

from the content of the representation...” [Rambow, 2010]
Syntactic content Representation types
e Syntactic dependency e Dependency tree
e Syntactic phrase/constituency structure e Hierarchy structure tree

= Syntactic phrase-structure parsing as a dependency structure parsing task

LTAG derivation tree

S
e
____->NP VP
IRNEPEEE A IR
NP ;
| VBZ NP<--=---------- NP
PRP VP~ ! N
|] walks NP NN
h . ~ \
She AD‘VP VP DET NP* dog
\
RB
‘ the
deliberately

Bottom-up construction of the syntactic phrase structure

|
|
|
| Ts

| | |

I | !

| |

| : !

| i J
She deliberately walks the dog

Representation alternative: the LTAG derivation tree is a dependency tree
[Rambow et al., 1997] 8

Proposed approach (1)

Lexical ambiguity

AN

Combination ¢—— — » Non-trivial dependency

constraints structure

Proposed approach (1)

A\

Geﬁ}b-}ﬁa{—ieﬁ 44— Non-trivial dependency

structure

Proposed approach (2)

! . . ! . .
She deliberately walks the dog She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships
2. LTAG parse labeler

Downsides

e 1st step complexity: O(n”) [Gémez-Rodriguez et al., 2009]

e 2nd step complexity?

10

Proposed approach (2)

| . ! ! . '
She deliberately walks the dog She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships
2. LTAG parse labeler

Downsides

e 1st step complexity: O(n”) [Gémez-Rodriguez et al., 2009]
= Efficient decoding in practice via Lagrangian relaxation
[Corro et al., 2016]

e 2nd step complexity?

= This contribution!
10

Table of contents

1. Introduction

2. Characterization of LTAG derivation trees
3. Outline of the algorithm

4. Complexity

5. Conclusion

11

Characterization of LTAG
derivation trees

LTAG derivation trees

Structural properties [Bodirsky et al., 2005]

e Arborescence (directed tree)
e 2-bounded block degree

o Well-nestedness

2-bounded block degree

e Maximum 1 gap in the yield of a sub-arborescence
= Due to wrapping adjunction

Well-nestedness

e Sub-arborescences must not interleave (not used in this presentation)

12

Yield of a vertex v: set of all nodes reachable from v

13

Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}

13

Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
Yield(1) = {1}

13

Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
Yield(1) = {1}
Yield(2) = {1,2,3,4}

13

Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
Yield(1) = {1}

Yield(2) = {1,2,3,4}
Yield(3) = {3}

13

Yield of a vertex v: set of all nodes reachable from v

Yield(0) = {0,1,2,3,4}
Yield(1) = {1}

Yield(2) = {1,2,3,4}
Yield(3) = {3}

Yield(4) = {1,3,4}

13

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2
Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U [4] BD(1) =2

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U[4] BD(1) =2
Yield(2) = [2...3] BD(2) =1

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U[4] BD(1) =2
Yield(2) = [2...3] BD(2) =1
Yield(3) = [3] BD(3) =1

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U [4] BD(1) =2
Yield(2) = [2...3] BD(2) =1
Yield(3) = [3] BD(3) =1
Yield(4) = [4] BD(4) =1

14

2-bounded block degree

Bound degree

e Vertex: number of contiguous intervals described by its yield

e Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

e Arborescence with a bound degree less or equal to 2

Yield(0) = [0...4] BD(0) =1
Yield(1) = [1] U [4] BD(1) =2
Yield(2) = [2...3] BD(2) =1
Yield(3) = [3] BD(3) =1
Yield(4) = [4] BD(4) =1

Intuition

e Auxiliary tree anchored at s; adjoined via wrapping adjunction

e Anchors s, and s3 attached below the foot node "

Dynamic programming [Gémez-Rodriguez et al., 2009]

e Complexity: O(n"), intractable on long sentences

= Asymptotically equivalent to LTAG parsing!
Combinatorial optimization [Corro et al., 2016]
e Complexity: exponential
e Practically: fast
= "Simple” optimization problem as there is no constraint
on combination operations
Intuition

1. Non-trivial dependency structure parsing tackled via combinatorial
optimization
2. Complexity of parse tree labeling?

15

Outline of the algorithm

Parse tree labeling

Lexical ambiguity

AN

Combination ¢——) Non-trivial dependency

constraints structure

16

Parse tree labeling

Lexical ambiguity

AN

Combinaton¢———) Nen-tﬁwakéepeﬁdeﬂey

constraints

16

Deduction system

! 0 ! ! .)
She deliberately walks the dog She deliberately walks the dog

Dynamic program
e Deduction rule

e Agenda

Bottom-up

1. Dependency tree: words considered after its modifiers

2. Elementary tree: non-terminal considered after its children

17

Key idea: extract information from the dependency structure

Notation Value

(va) 41

(va)= V6

Information about v, (va)e V2
(va)— V3

e Parent: v3 (va)1 %

e Yield span: [1,6]
e Gap span: [2,3] 8

Key idea: no integer span

Main difference
Vertices are used to define spans instead of integers

> combination rule constrained by arcs between vertices

Standard LTAG parser items (CKY) Our parser items

[h, T, p,c,i,j, k,] with: [Vh, T, P, C, by, by] with:
h: anchor word index vp: vertex (anchor word)
T: elementary tree T: elementary tree
p: gorn address p: gorn address
c: combination flag c: combination flag
i, I: yield span (integers) by left boundary (vertex)
J, k: gap span (integers) b,: right boundary (vertex)

19

Let's start with something simple... :-)

Move unary:

[vh,7,1.2.1, T, by, by]

NP VP
VBZ
walks

20

Let's start with something simple... :-)

Move unary:

[vh,7,1.2.1, T, by, by]
(b-2)¢r
[Vh7 T, 127 J—a b/a br]

NP VP
VBZ
walks

20

Let's start with something simple... :-)

Move binary:

[Vh, T, 1.2, T, b/g, b,g]

e
VP

VBZ
walks

20

Let's start with something simple... :-)

Move binary:

[Vha T, 127 T7 b/2a br2]
[Vh, 7, 17 L, b/l: br2]

(brl)é +1= (b12)<:

= Similar to LTAG parsing but with constraint on boundary vertices

e
VP

VBZ
walks

20

And now let’s see something nice! O_o

Substitute:

[Vm's T/: T b/: br]

S
S
NP NP VP
| |
PRP VBZ
| |
She walks

21

And now let’s see something nice! O_o

Substitute:
[Vma Tla]—a Tv b/a br]

[Vh7 T, P, Ta Vm, Vm]

Vm) = —, fss(m,p, 7")

= Fixed boundaries for the antecedent by the dependency tree

S
S
NP ecccee= > NP VP
| |
PRP VBZ
| |
She walks

21

And now let’s see something nice! O_o

Substitute:

[vim, 7]

[Vh7 T, P, Ta Vm, Vm]

(Vm)e = —, fss(7,p, ")

= v}, fixed by the dependency tree
= Number of applications linearly bounded

S
S
NP ecccee= > NP VP
| |
PRP VBZ
| |
She walks

21

Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[VmaT/aerabllabrl] [Vh7T7 paL7bl2;br2]

SQ SBARQ
RN \
WHNP SQ* NP NP SQoa
| |

VB VBZ
| |
like does

22

Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[vaTlul-,T:bIl:brl] [VhaTa paJ—vbl2;br2]

[Vh7 T, P, T7 Vm, Vm]

fsa(t, p, ")

= Boundaries of the left antecedent are fixed (similarly to substitution)

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es

22

Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[Vl‘mT/] [VhaTap,J—;blabr]

[V/'H T, P, Ta Vm, Vm]

sa(,p, ")

= Gap filled with boundaries of the right antecedent?

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es

22

Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:
[Vl‘mT/] [VhaTap,J—ablabr]

[VI'H T, P, Ta Vm, Vm]

Vm)e = (b1) <=, (Vm)= = (br)=, fsa(T, p, T/)

= v, fixed by the dependency tree

= Number of applications linearly bounded, again

SQaso . SBARQ
vaNP/Sé)*m NPT > SQ‘OA
\)B véz
IiILe do‘es

22

Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/aerabllabrl] [Vh7T7 paL7bl2;br2]

= Right limit of the gap b,; unknown in the dependency tree

VP S
7 e
ADVP VP* NP VP\
\ [
RB VBZ NP
\ \
deliberately walks

23

Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/al',Tablla_] [VhaTa p7J~7b/2abr2]

= Workaround: — boundary to prevent anything in the right side of the
gap

VP S
P N A
ADVP VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks

23

Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[VmaT/7<_] [Vh,T,p,L,b/,br]

= Left antecedent fixed by the dependency tree

VP S
P N A
ADVP VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks

23

Left/Right adjunction

Wait, we don't know the gap boundaries for left/right adjunctions! :'(

Left adjoin:
[Vm77'/7<—] [VhaTapvJ—ablabr]

Vm):> = (b/)<: =1 fSA(ﬂ P T/)

[thTv P, T7 Vm, bl’]

= Is the number of applications linearly bounded?
(yes, proof in the paper)

VP S
P N A
ADVP VP* "~._ NP_, VP\
b TmeT \
RB VBZ NP
\ \
deliberately walks

23

Complexity

Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;Tal'szvb/Zaer]
[Vha T, 1a J—a b/l) br2]

(br1)= +1=(bn)«

Proof intuition
3 boundaries = O(n?) ?

24

Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;Tal'szvb/Zaer]
[Vha T, 1a J—a b/l) br2]

(br1)= +1=(bp)<=
Proof intuition

3 boundaries - - O(n’) 7

= Bounded by the elementary tree size if no multiple adjunction

24

Complexity

Move binary:

[Vh7T71'1aT7bllabrl] [Vh;T;1'27T7b/2abr2]

br1)= +1=(bp)e
(i, 7,1, L, bin, byo)] () (br)

Proof intuition

3 boundaries - - O(n’) 7

= Bounded by the elementary tree size if no multiple adjunction
Complexity
O(min(t, n)?ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

Z: maximum ambiguity

Asymptotically linear w.r.t. the sentence length

24

Conclusion

Conclusion

Contributions

e New perspective on efficient LTAG parsing

e Linear time LTAG parse labeler

Future work

e Experimentation!
e Multiple adjunctions?

e Extension to other lexicalized formalisms:
Lexicalized Linear Context-Free Rewriting Systems, . ..

25

Questions?

	Introduction
	Characterization of LTAG derivation trees
	Outline of the algorithm
	Complexity
	Conclusion

