
Transforming Dependency Structures to LTAG

Derivation Trees

13th International Workshop on Tree Adjoining Grammars and

Related Formalisms (TAG+13)

Caio Corro Joseph Le Roux

September 1, 2017

Laboratoire Informatique de Paris Nord (LIPN), Université Paris 13 (France), CNRS UMR 7030



Introduction



Lexicalized Tree Adjoining Grammar (LTAG)

Why LTAGs?

• Constituency structure

• Linguistically plausible

• Built-in bi-lexical relations

• Deep syntax

Weighted grammars

• Disambiguation/Preference

• Robustness:

• Unknown words

• Errors

walks

VBZ

VP

S

NP

NP

dog

NN

NP

walks

VBZ

VP

S

NP

NP

river

NN

NP

B

1



LTAG parsing

CKY-type algorithm

• Deduction-rule based

• Bottom-up

Complexity

O(n6 max(n, g)gt):

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ O(n7) asymptotically w.r.t. the sentence length [Eisner et al., 2000]

2



LTAG parsing problem

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

3



Supertagging approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

4



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP?

5



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP?

5



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP?

5



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP?

5



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP

?

5



Supertagging approach (2)

She walks

VBZ

VP

S

NP

NP

the dog

NN

NP

She walks , despite her hatred for quadruped mammals , the dog

VBZ

VP

S

NP

NN

NP?

5



Supertagging approach (3)

Pipeline

1. Supertagging

2. Constraint LTAG parsing

Downsides

• Long distance relationship

• 2nd step complexity: O(n7t)

⇒ No lexical ambiguity

6



Phrase structure tree VS Dependency tree

”. . . One should always distinguish the type of representation [. . . ]

from the content of the representation...” [Rambow, 2010]

Syntactic content

• Syntactic dependency

• Syntactic phrase/constituency structure

Representation types

• Dependency tree

• Hierarchy structure tree

⇒ Syntactic phrase-structure parsing as a dependency structure parsing task

7



LTAG derivation tree

walks

VBZ

VP

S

NP

NP

VP

VP*ADVP

RB

deliberately

NP

PRP

She

NP

NN

dog

NP

NP∗DET

the

Bottom-up construction of the syntactic phrase structure

v1

τ1 v2

τ2

v3

τ3

v4

τ4

v5

τ5

1.1

1.2
1.2.2

1

She deliberately walks the dog

Representation alternative: the LTAG derivation tree is a dependency tree

[Rambow et al., 1997] 8



Proposed approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

9



Proposed approach (1)

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

9



Proposed approach (2)

v1

v2

v3

v4

v5

She deliberately walks the dog

⇒ v1

τ1 v2

τ2

v3

τ3

v4

τ4

v5

τ5

1.1
1.2

1.2.2

1.1

She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships

2. LTAG parse labeler

Downsides

• 1st step complexity: O(n7) [Gómez-Rodŕıguez et al., 2009]

• 2nd step complexity?

10



Proposed approach (2)

v1

v2

v3

v4

v5

She deliberately walks the dog

⇒ v1

τ1 v2

τ2

v3

τ3

v4

τ4

v5

τ5

1.1
1.2

1.2.2

1.1

She deliberately walks the dog

Alternative pipeline

1. Bi-lexical dependency parsing: long distance relationships

2. LTAG parse labeler

Downsides

• 1st step complexity: O(n7) [Gómez-Rodŕıguez et al., 2009]

⇒ Efficient decoding in practice via Lagrangian relaxation

[Corro et al., 2016]

• 2nd step complexity?

⇒ This contribution!
10



Table of contents

1. Introduction

2. Characterization of LTAG derivation trees

3. Outline of the algorithm

4. Complexity

5. Conclusion

11



Characterization of LTAG

derivation trees



LTAG derivation trees

Structural properties [Bodirsky et al., 2005]

• Arborescence (directed tree)

• 2-bounded block degree

• Well-nestedness

2-bounded block degree

• Maximum 1 gap in the yield of a sub-arborescence

⇒ Due to wrapping adjunction

Well-nestedness

• Sub-arborescences must not interleave (not used in this presentation)

12



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3 Yield(4) = {1, 3, 4}

4

1

3

13



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3 Yield(4) = {1, 3, 4}

4

1

3

13



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}

0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3 Yield(4) = {1, 3, 4}

4

1

3

13



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}

0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3 Yield(4) = {1, 3, 4}

4

1

3

13



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}

0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3

Yield(4) = {1, 3, 4}

4

1

3

13



Yield

Yield of a vertex v : set of all nodes reachable from v

0

2

4

1

3

s0 s1 s2 s3 s4

Yield(0) = {0, 1, 2, 3, 4}

0

2

4

1

3

Yield(1) = {1}

1

Yield(2) = {1, 2, 3, 4}

2

4

1

3

Yield(3) = {3}

3

Yield(4) = {1, 3, 4}

4

1

3

13



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3

v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3

v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node

14



2-bounded block degree

Bound degree

• Vertex: number of contiguous intervals described by its yield

• Arborescence: the maximal block degree of its vertices

2 Bounded degree arborescence

• Arborescence with a bound degree less or equal to 2

v0

v1

v2
v3

v4

s0 s1 s2 s3 s4

Yield(0) = [0 . . . 4] BD(0) = 1

Yield(1) = [1] ∪ [4] BD(1) = 2

Yield(2) = [2 . . . 3] BD(2) = 1

Yield(3) = [3] BD(3) = 1

Yield(4) = [4] BD(4) = 1

v0

v1

v2
v3

v4

v1

v4

v2
v3v3

v4

Intuition

• Auxiliary tree anchored at s1 adjoined via wrapping adjunction

• Anchors s2 and s3 attached below the foot node
14



Parsing

Dynamic programming [Gómez-Rodŕıguez et al., 2009]

• Complexity: O(n7), intractable on long sentences

⇒ Asymptotically equivalent to LTAG parsing!

Combinatorial optimization [Corro et al., 2016]

• Complexity: exponential

• Practically: fast

⇒ ”Simple” optimization problem as there is no constraint

on combination operations

Intuition

1. Non-trivial dependency structure parsing tackled via combinatorial

optimization

2. Complexity of parse tree labeling?

15



Outline of the algorithm



Parse tree labeling

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

16



Parse tree labeling

Lexical ambiguity

Combination
constraints

Non-trivial dependency
structure

16



Deduction system

v1

v2

v3

v4

v5

She deliberately walks the dog

⇒ v1

τ1 v2

τ2

v3

τ3

v4

τ4

v5

τ5

1.1
1.2

1.2.2

1

She deliberately walks the dog

Dynamic program

• Deduction rule

• Agenda

Bottom-up

1. Dependency tree: words considered after its modifiers

2. Elementary tree: non-terminal considered after its children

17



Key idea: extract information from the dependency structure

v1

v2

v3

v4

v5

v6

Why, he asks , does she walk ?

Information about v4

• Parent: v3

• Yield span: [1, 6]

• Gap span: [2, 3]

Notation Value

(v4)⇐ v1

(v4)⇒ v6

(v4)← v2

(v4)→ v3

(v4)↑ v3

⇒ Access in constant time

18



Key idea: no integer span

Main difference

Vertices are used to define spans instead of integers

⇒ combination rule constrained by arcs between vertices

Standard LTAG parser items (CKY)

[h, τ, p, c , i , j , k, l ] with:

h: anchor word index

τ : elementary tree

p: gorn address

c : combination flag

i , l : yield span (integers)

j , k: gap span (integers)

Our parser items

[vh, τ, p, c , bl , br ] with:

vh: vertex (anchor word)

τ : elementary tree

p: gorn address

c : combination flag

bl : left boundary (vertex)

br : right boundary (vertex)

19



Moving

Let’s start with something simple... :-)

Move unary:

[vh, τ, 1.2.1,>, bl , br ]

walks

VBZ

VP

S

NP

20



Moving

Let’s start with something simple... :-)

Move unary:

[vh, τ, 1.2.1,>, bl , br ]
(p · 2) /∈ τ

[vh, τ, 1.2,⊥, bl , br ]

walks

VBZ

VP

S

NP

20



Moving

Let’s start with something simple... :-)

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]

walks

VBZ

VP

S

NP

20



Moving

Let’s start with something simple... :-)

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

⇒ Similar to LTAG parsing but with constraint on boundary vertices

walks

VBZ

VP

S

NP

20



Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′, 1,>, bl , br ]

She

PRP

NP

walks

VBZ

VP

S

NP

21



Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′, 1,>, bl , br ]

(vm)← = −, fSS (τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Fixed boundaries for the antecedent by the dependency tree

She

PRP

NP

walks

VBZ

VP

S

NP

21



Substitution

And now let’s see something nice! O o

Substitute:

[vm, τ
′]

(vm)← = −, fSS (τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ vh fixed by the dependency tree

⇒ Number of applications linearly bounded

She

PRP

NP

walks

VBZ

VP

S

NP

21



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ

22



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Boundaries of the left antecedent are fixed (similarly to substitution)

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ

22



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′] [vh, τ, p,⊥, bl , br ]

fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ Gap filled with boundaries of the right antecedent?

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ

22



Wrapping adjunction

But for a more complicated operation? :/

Wrapping adjoin:

[vm, τ
′] [vh, τ, p,⊥, bl , br ]

(vm)← = (bl )⇐, (vm)→ = (br )⇒, fSA(τ, p, τ ′)
[vh, τ, p,>, vm, vm]

⇒ vh fixed by the dependency tree

⇒ Number of applications linearly bounded, again

like

VB

NPNPSQ∗WHNP

SQ

does

VBZ

SQOA

SBARQ

22



Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′, 1,>, bl1, br1] [vh, τ, p,⊥, bl2, br2]

⇒ Right limit of the gap br1 unknown in the dependency tree

VP

VP*ADVP

RB

deliberately walks

VBZ

VP

S

NP

NP

23



Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′, 1,>, bl1,−] [vh, τ, p,⊥, bl2, br2]

⇒ Workaround: − boundary to prevent anything in the right side of the

gap

VP

VP*ADVP

RB

deliberately walks

VBZ

VP

S

NP

NP

23



Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′,←] [vh, τ, p,⊥, bl , br ]

⇒ Left antecedent fixed by the dependency tree

VP

VP*ADVP

RB

deliberately walks

VBZ

VP

S

NP

NP

23



Left/Right adjunction

Wait, we don’t know the gap boundaries for left/right adjunctions! :’(

Left adjoin:

[vm, τ
′,←] [vh, τ, p,⊥, bl , br ]

(vm)⇒ = (bl )⇐ − 1, fSA(τ, p, τ ′)
[vh, τ, p,>, vm, br ]

⇒ Is the number of applications linearly bounded?

(yes, proof in the paper)

VP

VP*ADVP

RB

deliberately walks

VBZ

VP

S

NP

NP

23



Complexity



Complexity

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

Proof intuition

3 boundaries ⇒ O(n3) ?

⇒ Bounded by the elementary tree size if no multiple adjunction

Complexity

O(min(t, n)2ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ Asymptotically linear w.r.t. the sentence length

24



Complexity

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

Proof intuition

3 boundaries ⇒ O(n3) ?

⇒ Bounded by the elementary tree size if no multiple adjunction

Complexity

O(min(t, n)2ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ Asymptotically linear w.r.t. the sentence length

24



Complexity

Move binary:

[vh, τ, 1.1,>, bl1, br1] [vh, τ, 1.2,>, bl2, br2]
(br1)⇒ + 1 = (bl2)⇐

[vh, τ, 1,⊥, bl1, br2]

Proof intuition

3 boundaries ⇒ O(n3) ?

⇒ Bounded by the elementary tree size if no multiple adjunction

Complexity

O(min(t, n)2ntg) with:

n: sentence length

t: maximum number of nodes in an elementary tree

g : maximum ambiguity

⇒ Asymptotically linear w.r.t. the sentence length

24



Conclusion



Conclusion

Contributions

• New perspective on efficient LTAG parsing

• Linear time LTAG parse labeler

Future work

• Experimentation!

• Multiple adjunctions?

• Extension to other lexicalized formalisms:

Lexicalized Linear Context-Free Rewriting Systems, . . .

25



Questions?

25


	Introduction
	Characterization of LTAG derivation trees
	Outline of the algorithm
	Complexity
	Conclusion

